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ABSTRACT

2 In the problem of selecting the best of k populations, a natural rule

is to select the population corresponding to the largest sample value of an

appropriate statistic. As a retrospective analysis, a lower confidence

bound on the probability of a correct selection is derived when the probability

density function has the monotone likelihood ratio property under the location

parameter setting. The result is applied to the normal populations with

both known and unknown common variance. Tables to implement the confidence

bound are provided. .,, . ',. ,,- / .

~k.,

KEY WORDS: Selection problem; A retrospective analysis; Probability of a
correct selection; Lower confidence bound; Monotone likelihood ratio.
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A Lower Confidence Bound on the Probability

of a Correct Selection

Woo-Chul Kim

4; Seoul National University and Purdue University

1. INTRODUCTION

Consider independent observations X.. from each of k populations with

* cdf's G(x-ei), i=l,2,...,k, j=l,2,...,n. The experimenter wishes to select

the "best" population associated with the largest parameter ei* For this

purpose, we choose an appropriate statistic Y i=Y(X i...,X in) with cdf

F n(Y-e i) and use the natural selection rule which selects the population

corresponding to the largest Yi as the best.

For this selection problem, Bechhofer (1954) introduced the indifference

zone approach in which we determine the sample size n, prior to the experiment,

to control the probability of a correct selection (PCS)

k- 1
PCS = n( F +e -e.) d Fn(y) (1.1)-i=l Fn(Yek]'ei] "n[

where e[1 < e[2 <...< ek ] are the ordered parameters. In controlling the

PCS, we need to specify a preference zone where the largest two parameters

fk] and e~k~l ] are far apart. This indifference zone approach is clearly

formulated from the point of view of designing experiment.

Recently retrospective analyses regarding the PCS have been studied by

Gibbons, Olkin, and Sobel (1977), Anderson, Bishop, and Dudewicz (1977),
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Olkin, Sobel, and Tong (1982), and Faltin and McCulloch (1983) among others.

Most of these studies have dealt with the point estimation of the PCS.

Gibbons, Olkin, and Sobel (1977) and Olkin, Sobel, and Tong (1982)

have presented interval estimates of PCS. However the coverage probabilities

of such interval estimates have not be discussed. Thus they can not be

interpreted as confidence interval estimates (see Bechhofer 1980, p. 753).

In the case of normal populations, Anderson, Bishop, and Dudewicz (1977) have

given a lower confidence bound on PCS. The quantile unbiased estimator in

Faltin (1980) can also be regarded as a lower confidence bound on PCS. However,

it is restricted to the special case of k-2 populations.

This article presents a lower confidence bound on PCS when the pdf

fn(y-e) of F n(Y-e) has the monotone likelihood ratio (MLR) in y and e. From

this result, we obtain a lower confidence bound on PCS in the case of normal

populations with both known and unknown common variance. The obtained lower

confidence bound is sharper than that of Anderson, Bishop, and Dudewicz (1977),

and reduces to that of Faltin (1980) in the special case of k=2 populations.

Tables to implement the lower confidence bound as well as an illustrative

example are given.

2. A LOWER CONFIDENCE BOUND ON PCS

It can be easily seen from the inquality

PCS > f Fkl(y + e[k ] - e[k-l) d F(y) (2.1)

that a (conservative) lower confidence bound on PCS can be obtained from a

lower confidence bound on elk] - 0[k-l ] Thus we begin with constructing a

.4
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lower confidence bound on e[k]-e[k.1) . To do this, let Y(1)<Y(2). ..<_Y(k)

denote the ordered statistics of Y1,Y2,...,Yk, and let f(y) denote the pdf

of F. Note that the dependence of F and f on n is suppressed notationally.

We first state a lemma which is a generalization of a result in Anderson,

Bishop, and Dudewicz (1977).

Lemma I. Assume that log f(y) is concave. Then for any fixed c>O,

P [Y(k)-Y(kl)>C] is non-increasing in 6[l].

Proof. By semmetry we may assume eI <... Then, for any c>O, we have

k k
P[Y(k)'Y(kl)>c] u - i F(y+e.-ei-c) f(y) dy.

i s

Therefore,

a-lP [Y (k) -Y (k-l)>C]

k k
= n it F(y+el-ei-c) f(y+el-ej-c) f(y) dy -

j=2 -i=2
i j

k k
I r F(y+o.-ei-c) f(y+e - c) f(y) dy

j=2 1-2 = 1

k k
= ii F(y-01-c) (f(-e.-c) fj2-w 1=2 -C) f(y-e- y- 1 ) - f(Y-0 1 -c) f(y-e.)] dy.

i=j

.4,
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By the equivalence between the assumption and the MLR of f(y-6) in y and e,

the expression in the brackets is non-positive. Hence the result follows.

To define a lower confidence bound, let

H(x) - f F(x+y) f(y) dy
-w

denote the cdf of (Y1-e1) - (Y2-62) and let x,/2 denote the upper a/2 quantile

of H(x) for O<a<l. Note that H(x) is symmetric and xa/ 2>O. For a given

O<a<l and for t> x,/2 , we define a non-negative function L (t) = L(t) by

H(L(t)-t) + H(-L(t)-t) = . (2.2)

The existence of such a function L(t) for t > x /2 is proved in the Appendix

under the assumption in Lemma 1. Also it can be easily observed that the

function L(t) is strictly increasing for t > x

We present an exact 100(l-a)% lower confidence bound on e[k]-e[k-1) in

the following theorem.

Theorem 1. Assume that log f(y) is concave. Then

inf P Ee'k]-ekl ] > L(Y(k)-Y(k l))] =-a (2.3)
e

where L(t) is defined by (2.2) for t > x /2 and 0 for O<t<x/2.

Proof. For any fixed eOk] and 0[k-1]' let L = e[k]-e[k-l ]. Then it

follows from Lemma 1 that for all
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PEA > L(Y(k)-Y(kl))]

.

= P L l(A) > -Y(k-1)]

P L(A) > IY[k]-Y[k-13]

where L 1 (o) is taken as x i2. Note that the equality can be attained
when @[l] = 6[2] . = -m. Furthermore, for any value of A, we

have

P ([L (A) > JY[k]-Y[k-l]]

= I -{H(A-L-I(A)) + H(-A-L (A)))

= 1 -a

which completes the proof.

A simple but useful corollary to Theorem 1 is the following.

Corollary 1. Under the assumption of Theorem 1, we have

p.

P [PCS >PL] - a for all e

where

P= - Fk'(y+L(Y(k)Y(k-1 ))) d F(y). (2.4)

~ \ %~. %**9 % .. *. -
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The lower confidence bounds in (2.3) and (2.4) become trivial when

Y (k)-Y(k-1) x,/2, that is, when the data do not show significant evidence

for 6[k] > e[kl]. In fact, it can be easily shown that any lower confidence

bound for 6[k]-o[k-l], which is a non-negative and non-decreasing function

of Y(k)-Y(k-l)' becomes trivial in such a case.

3. NORMAL POPULATIONS WITH A COMMON VARIANCE

LetXij be independent observations from N(i.,2), i=l,...,k, j-l,...,n,

where the common variance 02>0 may be either known or unknown. The best

population is the one associated with [k] i and we select the

population corresponding to the largest sample mean Xi as the best. The

probability of a correct selection is

k-l
PCS = oII (x+ (irk-.i])/a)ds(x) (3.1)

-.- -- i=l

where '[l] <'"[k] are the ordered pi's and P is the standard normal cdf.

In the case of known variance, by taking Yi = Xi/aand ei = A- i/a in

Theorem 1 and Corollary 1, we can make the following statement with 100 (1-a)%

confidence;

(P~k]-P[k-l])/cF >_Yr7-in h(/n (k)-X(k-1) )/2

PCS > 0 4,k-l [x+v)h() (k(k).I(k-1) V ) d 4t(x) (3.2)
--

where X(1) <...<X(k) are the ordered sample means and the non-negative function

h(t) is defined by

-%
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4,(h(t)-t) + 4,(-h(t)-t) (3.3)

for t > z / 2 and h(t) =0 for 0 < t <z 2 . Here, z is the upper a/2

quantile of the standard normal distribution.

When the common variance a2 is unknown, let S2 denote the pooled sample
2 2 2

variance. Note that vS2/a2 has a x distribution with v=k(n-l) degrees of

freedom. Since S2 is independent of X1*...,Yk, this case can be treated

similarly by considering the conditional coverage probability given S2 = s
2

and by taking Y = n i/ i = v/5' i/a. Therefore we omit the derivation

for the following confidence statement; With 100 (1-a)% confidence, we have

(U~]- k~l)/o V ( X(k)-X(k-1)/ S

PCs > = ck-I [x+VZ h (/n(X-k)-Xk )//Z S)] d @(x) (3.4)

where the non-negative function h (t) is given byV

Sfc [o(h (t)-tu) + D(-h (t)-tu)] d Q (u) = (3.5)

for t > t /2 (v) and h (t) = 0 for O<t<t /2 (v). Here, t ,/ 2(v) is the upper

(%/2 quantile of the t-distribution with v degrees of freedom and Q (u) is

the cdf of x/,'.

The values of the function h (t) are given in Tables I and 2 for a = 0.05,

0.10 and for selected values of v and t ta/2(v). Note that hv(t) = h(t) for

v=.. Details of the computational techniques are given in the Appendix. As

can be seen from Figure 1, our computations have indicated that the function
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hV(t) becomes nearly linear for moderately large values of t-t /2(v). For

t values larger than those in Tables 1 and 2, the values of h (t) satisfying

(3.5) can be found numerically or be approximated by linear extrapolation.

Especially in the case of known variance (v-=), it can be easily shown that

lim (h(t)-t) = -z , t - z < h(t) < t - z for t > z(3.6)
cL Of2 (3.6)/2

Figure 1 approiximi,.-ly here

It follows from the lower bound on h(t) in (3.6) that the lower confidence

bound in (3.2) is sharper than the one in Anderson, Bishop, and Dudewicz (1977).

It can also be easily observed that in the special case of k=2 it reduces to

the one in Faltin (1980).

Tables I and 2 approximately here

4. AN EXAMPLE

For illustration purpose, we consider an example given by Kleijnen, Naylor,

and Seaks (1972), in which a firm that produces a single product from a multi-

stage production process is interested in selecting the one most profitable

production plan among k=5 possible plans. They run simulation experiments with

a sample of size n=50 for each plan and assume that the profit using each

plan has a normal distribution with a common unknown variance. The data are

as follows:

! - ?... .- ..V. .-,*. . '-. - - - - " • "...
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Plan i Mean profit Standard deviation

1 2976.40 175.83

2 2992.30 202.20

3 2675.20 250.51

4 3265.30 221.81

5 3131.90 277.04

From the given data, plan 4 yields the largest sample mean and is selected

as the most profitable plan. A reasonable question is: what kind of confidence

statement can be made regarding the PCS? First, we observe that the pooled

sample standard deviation is s = 228.26 with v = 5(49) = 245 degrees of

freedom and t = A (x (5)_x( 4 ))I/ s = 2.92. Choosing = .10, we find

v2 h (t) = 2.32 by (3.6). Using Table A.2 in Gibbons, Olkin, and Sobel (1977)
V

for the integral value in (3.4), we can state with 90% confidence that PCS > .856.

5. CONCLUDING REMARKS

The results in Section 2 are derived for location parameter families.

However, similar results for scale parameter families can be obtained. For the

problem of selecting the population with the largest scale parameter ei , the PCS

in (1.1) is replaced by

k-l (5.1)
PCS= 0 F(O[ d F(y)i [k]Y/e[i])

where F(y/ei) is the cdf of an appropriate statistic Yi>O. Similar analysis

yields, under the assumption of MLR of the pdf f(Y) in y and o, -hat the

100(1-q)% lower confidence bound in (2.4) can be replaced by

P fo0 Fk- (y L(Y(k)/Y(k-I))) d F(y). (5.2)

... ....-..-.. ,... ....-.... .-... ".... ............
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The function L(t) in (5.2) is defined by

H(L(t)/t) + H((tL(t)) ") =

for t > x 2 and L(t) = 1 for 0 < t < x/ 2 where H(x) is the cdf of YI/Y

for e = 82 and x is the upper a/2 quantile of H(x). Also, obvious

modifications can be made for the problem of selecting the population with

the smallest scale parameter. Such modifications can be useful, for example,

for the normal variances problem.

As a final remark, we point out that the lower confidence bound in (2.4)

is conservative due to the use of the inequality (2.1). To obtain an exact

lower confidence bound on PCS, one needs simultaneous lower confidence

bounds on O[k]-6[i]' i=l,2,...,k-l which the author was unable to obtain.

APPENDIX

To show the existence of a non-negative function L(t) satisfying (2.2),

we assume that log f(y) is concave and let T t(a) = H(a-t) + H(-a-t) for fixed

t > x/ 2. Then

d t(a) = H'(a-t) - H'(a+t)

= [ [f(y-t)-f(y+t)] f(y-a)dy (A.l)

where H'(x) is the pdf of H(x).

Note that the expression in the brackets in (A.1) changes sign once from

- to + as y varies from -- to +-. Therefore, by the sign diminishing property

of MLR (see, for example, Lehmann 1954, p. 74), - 'vt(a) changes sign at most
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once from - to + as a varies from -- to +-. Furthermore, by the symmetry of

H'(t), -L ft(a) = 0 for a = 0. Thus Tt(a) is strictly increasing in a > 0.

Also it can be observed that for fixed t x/2, T() = 2H(-t) < a and

Tt (a) l as a -. Hence L(t) can be defined by (2.2).

For constructing Tables I and 2, numerical evaluation of the integral

in (3.5) was done via IMSL's subroutine MDTN. In the case of a known variance

(v=o), MDNOR was used. The value of hv(t) was found numerically by finding a

root of (3.3) or (3.5) via the modified regula falsi method with the accuracy

up to l0- . Then, the values of h (t) were rounded.
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IN

Table 1. Values of hM(t) for a=.05.

t - t ()

.05 .10 .15 .20 .25 .30 .35 .40 .45 .50

5 .198 .282 .348 .405 .456 .502 .546 .588 .628 .666
6 .203 .290 .358 .416 .469 .517 .563 .606 .646 .688
7 .207 .295 .364 .424 .478 .528 .575 .619 .663 .704
8 .210 .299 .369 .430 .485 .536 .584 .630 .674 .7179 .212 .302 .373 .43S .490 .542 .591 .638 .683 .-7,26

1 0 .214 .305 .376 .439 .495 .547/ .597 .644 .690 .734
11 .215 .307 .379 .442 .498 .551 .601 .649 .696 .741
12 .216 .308 .381 .444 .501 .555 .605 .654 .700 .7/46
13 .217 .310 .383 .446 .504 .558 .609 .657 .705 .751
14 .218 311 .384 .448 .506 .560 .611 .661 .708 .755

Is .219 .312 .386 .450 .508 .562 .614 .664 .711 .758
16 .219 .313 .387 .451 .510 .564 .616 .666 .714 .761
17 .220 .314 .388 .453 .511 .566 .618 .668 .717 .764
18 .220 .314 .389 .454 .513 .568 .620 .670 .719 .767
19 .221 .315 .390 .455 .514 .569 .621 .672 .721 .769

20 .221 .316 .390 .456 .515 .570 .623 .674 .723 .771
30 .223 .319 .395 .461 .522 .578 .632 .684 .734 .783
60 .226 .323 .400 .467 .528 .586 .641 .694 .746 .796

120 .227 .325 .402 .470 .532 .590 .645 .699 .752 .803
.228 .326 .404 .473 .535 .594 .650 .704 .758 .810

t -t (v)

v .60 .70 .80 .90 1.0 1.1 1.2 1.3 1.4 1.5

5 .740 .810 .878 .944 1.009 1.072 1.134 1.196 1.256 1.317
6 .766 .840 .912 .982 1.051 1.118 1.185 1.251 1.317 1.381
7 .785 .862 .937 1.010 1.082 1.153 1.224 1.293 1.362 1.431
8 .799 .879 .956 1.032 1.107 1.181 1.254 1.327 1.399 1.470
9 .811 .892 .972 1.050 1.127 1.203 1.279 1.354 1.428 1.502

10 .820 .903 .985 1.065 1.144 1.222 1.299 1.376 1.453 1.529
11 .828 .912 .995 1.077 1.157 1.237 1.316 1.395 1.473 1.551
12 .834 .920 1.004 1.087 1.169 1.250 1.331 1.411 1.491 1.570
13 .840 .927 1.012 1.096 1.179 1.262 1.343 1.425 1.506 1.587
14 .845 .933 1.019 1.104 1.188 1.271 1.354 1.437 1.519 1.601

15 .849 .938 1.025 1.111 1.196 1.280 1.364 1.448 1.531 1.614
16 .853 .942 1.030 1.117 1.202 1.288 1.373 1.457 1.541 1.625
17 .856 .946 1.035 1.122 1.209 1.295 1.380 1.466 1.551 1.635
18 .859 .950 1.039 1.127 1.214 1.301 1.387 1.473 1.559 1.644
19 .862 .953 1.042 1.131 1.219 1.306 1.393 1.480 1.566 1.652

20 .864 .956 1.046 1.135 1.223 1.311 1.399 1.486 1.573 1.660
30 .880 .974 1.068 1.160 1.252 1.344 1.436 1.527 1.618 1.708
60 .896 .994 1.091 1.187 1.283 1.379 1.474 1.570 1.665 1.760
120 904 1.004 1.102 1.201 1.299 1.397 1.494 1.592 1.690 1.787

.913 1.014 1.115 1.215 1.315 1.415 1.515 1.615 1.715 1.815
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Table 2. Values of h v(t) for a=.10.

t ta/ 2 (v)

v .05 .10 .15 .20 .25 .30 .35 .40 .45 .50

5 .224 .318 .392 .455 .512 .564 .613 .660 .704 .747
6 .228 .324 .400 .464 .522 .576 .626 .674 .720 .765

7 .231 .329 .405 .471 .530 .584 .636 .685 .732 .777
8 .233 .332 .409 .475 .535 .591 .643 .693 .740 .787
9 .235 .334 .412 .479 .540 .596 .648 .699 .747 .794

10 .236 .336 .415 .482 .543 .599 .653 .704 .753 .800
11 .237 .338 .417 .485 .546 .603 .656 .708 .757 .805
12 j .238 .339 .418 .487 .548 .605 .659 .711 .761 .809
13 .239 .340 .420 .488 .550 .608 .662 .714 .764 .813
14 .240 .341 .421 .490 .552 .610 .664 .716 .767 .816

15 .240 .342 .422 .491 .553 .611 .666 .718 .769 .818
16 .241 .343 .423 .492 .555 .613 .668 .720 .771 .820
17 .241 .343 .424 .493 .556 .614 .669 .722 .773 .823
18 .242 .344 .424 .494 .557 .615 .670 .723 .774 .824
19 .242 .345 .425 .495 .558 .616 .671 .72S .776 .826

20 .242 .345 .426 .495 .558 .617 .673 .726 .777 .827
30 .244 .348 .429 .500 .563 .623 .679 .733 .786 .837
60 .246 .351 .433 .504 .569 .629 .686 .741 .794 .846

120 .247 .352 .435 .506 .571 .632 .689 .744 .798 .851
m .248 .354 .436 .508 .574 .635 .693 .748 .802 .856

t - /2(v)

V .60 .70 .80 .90 1.0 1.1 1.2 1.3 1.4 1.5

5 .830 .908 .984 1.058 1.131 1.202 1.272 1.342 1.410 1.479
6 .850 .932 1.011 1.089 1.165 1.240 1.314 1.387 1.460 1.532
7 .865 .949 1.031 1.111 1.190 1.268 1.345 1.421 1.497 1.572
8 .876 .962 1.046 1.128 1.209 1.289 1.369 1.448 1.526 1.604
9 .885 .972 1.058 1.142 1.225 1.307 1.388 1.469 1.549 1.629

10 .892 .981 1.068 1.153 1.237 1.321 1.404 1.486 1.568 1.650
11 .898 .988 1.076 1.162 1.248 1.333 1.417 1.501 1.584 1.667
12 .903 .994 1.083 1.170 1.257 1.343 1.428 1.513 1.598 1.682
13 .907 .999 1.088 1.177 1.264 1.351 1.438 1.524 1.609 1.694
14 .911 1.003 1.093 1.183 1.271 1.359 1.446 1.533 1.619 1.705

15 .914 1.007 1.098 1.188 1.277 1.36S 1.453 1.541 1.628 1.715
16 .917 1.010 1.102 1.192 1.282 1.371 1.460 1.548 1.636 1.724
17 .919 1.013 1.105 1.196 1.286 1.376 1.465 1.554 1.643 1.731
18 .921 1.015 1.108 1.200 1.290 1.381 1.470 1.560 1.649 1.738
19 .923 1.018 1.111 1.203 1.294 1.385 1.475 1.565 1.655 1.744

20 .925 1.020 1.113 1.206 1.297 1.388 1.479 1.570 1.660 1.750
30 .936 1.033 1.129 1.224 1.319 1.413 1.506 1.600 1.693 1.786
60 .948 1.047 1.146 1.243 1.340 1.437 1.534 1.631 1.727 1.824
120 .954 1.054 1.154 1.253 1.352 1.450 1.549 1.647 1.745 1.843

OD .959 1.061 1.162 1.263 1.363 1.463 1.563 1.663 1.763 1.863
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